Drug Safety Testing Center

Safety Pharmacology Assessment of Cardiac Ion Channels by Manual Patch Clamp With CiPA Protocols

O Hiroshi Matsukawa, Taku Izumi, Mao Yamaguchi, Satomi Tomizawa, Hironori Ohshiro Higashimatsuyama Laboratory, Drug Safety Testing Center Co., Ltd., Saitama, Japan

Introduction

The ICH S7B and E14 guidelines, which focus on hERG channel block and QT prolongation, are highly sensitive but not very specific for early prediction of proarrhythmic risks. Opposed to those guidelines, the Comprehensive in vitro Proarrhythmia Assay (CiPA) was proposed to determine whether new drug candidates are proarrhythmic by integrating the drug effects on multiple human cardiac ion channels into a human cardiomyocyte model. This approach has a potential to improve sensitivity as well as specificity for proarrhythmic risks. Through the validation process of this model, the CiPA initiative has concluded that three ion channels, hERG, hNav1.5 (late current), and hCav1.2, have significant impacts on the action potential duration of cardiomyocytes. Many researchers worldwide have attempted for verification of the CiPA-recommended protocols of 2018, to our knowledge, yet few ion channel data are publicly available. The purpose of this research is to collect ion channel data with sufficient accuracy, faithfully based on the CiPA protocols, to fulfill precise proarrhythmic prediction. We performed block potency measurement with several CiPA training/ validation drugs on our manual patch-clamp platform in HEK293/CHO cells expressing hERG, hNav1.5, and hCav1.2. Of the CiPA drugs, the following was bepridil, dofetilide, chlorpromazine, cisapride, astemizole selected: ranolazine and verapamil: two or three drugs each from the high ntermediate, and low TdP risk categories. IC50 values / Hill coefficients were calculated from the results. We would like to present and discuss differences in the parameter sets from the CiPA datasets including high-throughput platform. In silico prediction will be performed with the data set obtained in the research.

Materials & Methods

TdP risk	High	Intermediate	Low		
	Bepridil	Astemizole	Ranolazine		
CIPA	Dofetilide	Chlorpromazine	Verapamil	plus	Flecainide
urug		Cisapride			

Cell lines: hERG-HEK293, Nav1.5-HEK293, Cav1.2-CHO

Patch-clamp recording: Voltage protocols, temperature, and ionic compositions of the solutions were fully identical to what the CiPA initiative announced. In a subset of assays, sucrose was added to the extracellular solutions for optimizing the osmotic balance

Results

hERG Assay with IC₅₀ Only Protocol

Note: Ma holding pe input resis ial of -80 mV. When the cells the cells were exposed to intensively inhibiting compound eased along with decline of leak current to less than 0 pA as gradually incr

• hERG Assay with Dynamic protocol

							CIPA data	set
			Initial pr	zak	Steady st	ate	Manual ^{*1}	
TdP risk	Test concentration (nmol/L)	n	IC ₅₀	HIII	IC ₅₀	HIII	IC ₅₀	HIII
Bepridil	3, 10, 30, 100	3	68.45	0.46	15.75	0.80	50	0.9
Dofetilide	0.3, 1, 3, 10	3	2.53	0.86	1.85	1.06	4.9	0.9
Astemizole	0.1, 0.3, 1, 3	3	0.77	0.84	0.57	0.95		
Chlorpromazine	100, 300, 1000, 3000	3-4	574.86	0.77	466.40	1.00	929	0.8
Cisapride	1, 3, 10, 30	3.4	NA	NA	8.39	0.80	10.1	0.7
Ranolazine	1000, 3000, 10000, 30000	3.4	1.35E+04	0.67	8.50E+03	0.89	8.27E+03	0.9
Verapamil	100, 300, 1000, 3000	4	2.48E+03	0.60	369.12	0.85	288	1
Flecainide	300, 1000, 3000, 10000	4	2.47E+03	0.65	1.16E+03	0.86		-

Late Nav1.5 Assay Using ATX-II

Ranolazine

Late current at -15 mV step

Note: An appropriate amount of sucrose was added to the extracellular solution to adjust osmotic balance for the stable recording of late and peak Nav1.5 currents.

Peak Nav1.5 Assay

Table 4 Fff cts of CIPA C nds on Peak Curr ent of Nav1.5 Char

					CIPA data set					
					Manual	11	HTS ¹²			
TdP risk	Test concentration (µmol/L)	n	IC ₅₀	HIII	IC _{so} Hill		IC ₅₀	HIII		
Bepridil	0.3, 3, 10	4	2.07	1.08	2.96	1.2	1.61E+03	5.4		
Dofetilide	100	2	>> 100°1	NA	1.36	1.1	1.46E+03	5.1		
Astemizole"	1, 3, 10	4	4.76	1.45	5.41	0.76	2.43	4.8		
Chlorpromazine*	1, 3, 10	5	3.99	1.56	4.58	2.1	21.2	2.5		
Cisapride	3, 10, 50	4	13.05	1.35	1.79E+03	0.67	16.8	2.3		
Ranolazine	10, 100, 300, 1000	4-5	239.52	1.23	53.3	1.9	83.7	1.1		
Verapamil [®]	10, 30, 100	4	41.43	1.19	2.59E+03	3.5	2.48E+03	5.1		
Flecainide	3, 30, 100	4	24.28	1.12						
*1: At physiological temperature [Crumb et al. 2016]. *2: [Li et al. 2018]. *3: 4.4% at 100 µmol/L										

Cav1.2 Assav

Verapami

Current Waveforms

Note: In Cav1.2 current protocol, subtraction with a trace recorded in the presence of nifedipine nducted for more accurate analys

Table 5. Effects of CiPA Compounds on Cav1.2 Channe

							CIPA data set				
			Initial peak		2nd peak		Manual ^{*1}		HTS ^{*2}		
TdP risk	Test concentration (µmol/L)	n	IC ₅₀	Hill	IC _{so}	Hill	IC ₅₀	HIL	IC _{so}	HII	
Bepridil	0.1, 0.3, 1, 3	4	0.39	1.09	0.36	1.22	2.82	0.65	638	4.6	
Dofetilide"	100	4	>> 100 ^{*2}	NA	>> 100 ^{*4}	NA	44.5	3.6	2.30E+03	5.4	
Astemizole"	0.03, 0.1, 0.3, 1	4	0.19	1.20	0.22	1.18	0.553	1.2	1.08	5.9	
Chlorpromazine"	0.1, 0.3, 1, 3	4-5	0.74	1.59	0.73	1.98	8.32	0.85	6.35	2	
Cisapride	0.3, 1, 3, 10	4-5	2.65	1.08	1.49	1.24	1.03E+03	4.8	4.05E+03	5.6	
Ranolazine	30, 100, 300, 1000	4-5	513.65	0.99	324.19	0.92	900	3.9	6.54E+03	3.8	
Verapamil"	0.1, 0.3, 1, 3	4	0.39	0.98	0.51	1.02	0.204	1.1	11.2	0.8	
Flecainide	3, 6, 30, 60	4	23.76	0.88	21.46	1.00				-	

*1: Action potential protocol, Ba2+ as charg *3: 8.6% at 100 μmol/L. *4: 5.7% at 100 μm

NA: Not appl

Conclusions

- In hERG IC₅₀ only and dynamic model protocols, the IC₅₀ values were almost similar to the results by CiPA.
- In late and peak Nav1.5 current protocols, the $\mathrm{IC}_{\mathrm{50}}$ values of dofetilide and cisapride deviated far from the results by CiPA
- Also in Cav1.2 current protocol, the $\mathrm{IC}_{\mathrm{50}}$ values of dofetilide and cisapride deviated far from the results by CiPA
- In silico prediction will be performed with the data set obtained in the research, and the parameters in the analyses will be compared to CiPA work. In addition to CiPA drugs, the TdP risk of flecainide will also be estimated.

References

- Recommended voltage protocols to study drug-cardiac ion channe interactions using recombinant cell lines Journal of Pharmacological and Toxicological Methods, Crumb et al.
- 2016
- Circ Arrhythm Electrophysiol, Li et al., 2017 CLINICAL PHARMACOLOGY & THERAPEUTICS, Li et al., 2018

Acknowledgement

We would like to express our gratitude to iSmart C-Quest for their generous technical advices and constant discussions with respect to data acquisition and analyses.