Additional validation of alternative skin irritation test method using LabCyte EPI-MODEL24 of cultured skin

Nakamura, M. ¹⁾, Suzuki, T. ²⁾, Shinoda, S. ³⁾, Kato, M. ⁴⁾, Kojima, H. ⁵⁾

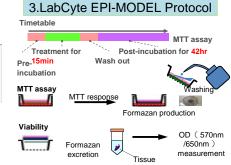
KOBAYASHI Pharmaceutical Co., Ltd.¹), Fancl Corporation²), Drug Safety Testing Center Co., Ltd.³), Japan Tissue Engineering Co., Ltd.⁴), National Institute of Health Sciences ⁵)

1.Introduction

From 2008 to 2009, the Validation Committee of the Japanese Society for Alternative to Animal Experiments twice implemented validation studies on an alternative skin irritation test method, to confirm the usefulness of the LabCyte EPI-MODEL24 of cultured skin prepared in Japan. This multicenter validation study with LabCyte EPI-MODEL24 could address the following three issues related to judgment of skin irritation: consistency among study centers (inter-laboratory reproducibility), consistency with judgments obtained for EPISKIN™ authenticated by ECVAM (equivalence), and consistency with the results of animal experiments.

(alternativity). The third-party accreditation of this test method was performed by the Skin Irritation Evaluation Committee of JaCVAM and Third-party Accreditation Committee of OECD, and consequently, this model was judged to be insufficient for evaluation of skin irritation because of false-negative results for 1-bromohexane, etc. Then, the manufacturer of LabCyte EPI-MODEL24, Japan Tissue Engineering Co., Ltd. (J-TEC), reviewed the test method, leading to successful improvement. The Steering Committee of JaCVAM considered this improvement to be critical for the protocol of the test method, and the improved test method was to be validated accordingly with the support of MHLW Grant-in-Aid for Scientific Research.

LabCyte EPI-MODEL Normal hu


The LabCyte EPI-MODEL is produced by culturing human epidermal cells on a culture plate. After human epidermal cells have been cultured and proliferated, exposing their surface to the air causes it to keratinize*, creating a cultured epidermis model similar to the human epidermis (Figures A and B).

*QC batch release criteria IC50=1.4-4.0mg/mL(mean 2.57mg/mL), 18 hr treatment with SLS.

4.History of LabCyte EPI-MODEL24 directed to comply with the OECD test guideline (since 2009)

Twenty substances listed in the performance standards in the "OECD Guidelines for the Testing of Chemicals Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method" were coded and delivered to 3 participating study centers where validation was performed using the improved protocol.

- 2009. 1 Phase3 Validation completed Applied OECD TG
 - 8 Validation report submitted to OECD
- 2010. 3 OECD peer review completed Guideline for the skin irritation tests using EPISKIN™ established
 - 8 Answer sent to OECD peer reviewer

5.Plan of additional validation

Chairman : Hajime Kojima (NIHS) Committee : Masakazu Katou (J-TEC),

Takashi Omori (Doshisha University)

- Participating study center : KOBAYASHI Pharmaceutical Co., Ltd. Fancl Corporation
- Drug Safety Testing Center Co., Ltd. Training
- J-TEC gave technical guidance using the improved protocol at the National Institute of Health Sciences on July 27, 2010.

Preliminary test

At each study center, the preliminary test was repeated several times to master the protocol, which was improved for 1-bromohexane to yield positive results.

Implementation period

Validation was performed during the period between September and November, 2010.

6.Modification points of rinsing protocol between SOP ver.7.1 and SOP ver.8.2

Modification points	SOP ver.7.1	SOPver.8.2					
1.The PBS stream from	It was not briefly defined.	It was defined to avoid that the PBS stream hit directly to					
washing bottle	it was not blieny defined.	the tissue surface.					
2.To remove PBS by	It was not briefly defined.	It was briefly defined.					
tapping	it was not blieny defined.	it was blieny defined.					
3.How to use of the cotton	It was not briefly defined.	It was defined to avoid that the cotton pad touched directly to the tissue surface.					
pad	it was not briefly defined.						

7.Test chemicals and coded No. used at an additional LabCyte validation study

				Chemical code					
No.	Name	CAS number	Storage	Lab 1	Lab 2	Lab 3			
1	1-bromo-4-chlorobutane	6940-78-9	RT	B-261	D-281	G-301			
2	Diethyl phthalate	84-66-2	RT	B-262	D-282	G-302			
3	naphtalen acetic acid	86-87-3	RT	B-263	D-283	G-303			
4	allyl phenoxy-acetate	7493-74-5	RT	B-264	D-284	G-304			
5	isopropanol	67-63-0	RT	B-265	D-285	G-305			
6	4-methyl-thio-benzaldehyde	3446-89-7	RT	B-266	D-286	G-306			
7	methyl stearate	112-61-8	RT	B-267	D-287	G-307			
8	heptyl butyrate	5870-93-9	RT	B-268	D-288	G-308			
9	hexyl salicylate	6259-76-3	RT	B-269	D-289	G-309			
10	Cinnamaldehyde	104-55-2	2-8C	B-270	D-290	G-310			
11	1-decanol	112-30-1	RT	B-271	D-291	G-311			
12	Cyclamen aldehyde	103-95-7	RT	B-272	D-292	G-312			
13	1-bromohexane	11-25-1	RT	B-273	D-293	G-313			
14	2-chloromethyl-3,5-dimethyl-4-methoxypyridine HCl	86604-75-3	RT	B-274	D-294	G-314			
15	di-n-propyl disulphide	629-19-6	RT	B-275	D-295	G-315			
16	Potassium Hydroxide 5%	1310-58-3	RT	B-276	D-296	G-316			
17	benzynethiol, 5-(1,1-dimethylethyl)-2-methyl	7340-90-1	RT	B-277	D-297	G-317			
18	1-methyl-3-phenyl-1-piperazine	5271-27-2	RT	B-278	D-298	G-318			
19	heptanal	111-71-7	RT	B-279	D-299	G-319			
20	1,1,1 Trichloroethane	71-55-6	RT	B-280	D-300	G-320			

9.Intra-and inter-laboratory reproducibility of negative

and positive controls in the additional validation

8.Performance standard checklist

		Lab	Negativ	e control	Positive control	
Acceptance criteria <u> • Negative control value</u>	Success criteria <u>Results of intra-</u>		OD value	Mean SD	Viability (%)	Mean SD
0.7≤ mean OD	laboratory reproducibility:	Lab1	0.88		2.29	
(A570/650) ≤ 2.5 • Positive control value	Consistent for more		0.87	0.91 ±0.05	3.62	2.65 ±0.68
5%SLS solution mean	than 90% of judgments.		0.92		2.59	
tissue viability $\leq 40\%$	Results of inter-		0.98		2.10	
Standard Deviation	laboratory reproducibility:	Lab2	1.03	1.03 ±0.06	4.98	3.87 ±0.84
All substances standard	Consistent for more		1.02		3.22	
deviation SD ≤ 18% Substances not meeting the standards could be additionally tested up to twice for confirmation.	than 80% of judgments.		1.13		4.50	
	Sensitivity, Specificity,		0.98		3.02	
	Accuracy: Performance standards		0.98		3.62	
	were met.	Lab3	1.09	1.07 ±0.09	2.87	2.69 ±0.49
	Sensitivity		0.98		3.37	
	90%,Specificity		1.01		2.64	
	70%, Accuracy 80%		1.06		2.55	
			1 20		2 02	

10.Analyzed results in LabCyte additional validation study

No.	Name	Lab.1			Lab.2			Lab.3			Lab 1 & 3		In vivo classification		
		1	2	3	1	2	3	1	2	3				NI	Total
1	1-bromo-4-chlorobutane	12.4	11.3	19.0	16.5	10.7	10.6	9.0	9.8	9.8		1	9	3	12
2	Diethyl phthalate	80.1	81.5	69.6	60.9	57.5	69.5	90.5	102.0	93.0	In vitro —	NI	1	7	8
3	naphtalen acetic acid	108.0	113.0	105.0	96.5	96.7	90.2	89.4	106.0	98.9	prediction -		10		-
4	allyl phenoxy-acetate	19.1	65.1	59.3	66.6	70.6	66.2	90.1	93.0	93.2	·	Total	10	10	20
5	isopropanol	89.6	77.0	67.6	75.9	74.8	77.1	86.6	67.2	74.4					
6	4-methyl-thio-benzaldehyde	16.2	15.9	17.0	17.3	13.5	11.4	15.5	16.1	12.0	Sensitivity (%)		90.0		
7	methyl stearate	110.0	110.0	104.0	98.8	93.1	76.3	91.2	102.0	108.0	Specificity (%	70.0			
8	heptyl butyrate	109.0	122.0	111.0	93.1	106.0	86.6	95.5	106.0	119.0	Accuracy (%)		80.0		
9	hexyl salicylate	105.0	111.0	102.0	98.0	95.7	83.5	99.6	100.0	113.0	710001009 (70)	00.0			
10	Cinnamaldehyde	15.7	20.3	16.0	11.5	15.9	11.4	17.3	14.1	14.9	Lab 2		In viv	o classifi	cation
11	1-decanol	14.2	16.5	9.4	12.4	17.3	16.2	22.1	15.1	14.1				NI	Total
12	Cyclamen aldehyde	8.89	15.9	10.0	11.0	7.8	9.0	6.0	7.4	5.7		1	10	3	13
13	1-bromohexane	16.2	16.1	15.5	6.6	17.2	19.0	17.5	17.0	16.2	In vitro	1		- 3	7
14	2-chloromethyl-3,5-dimethyl-4- methoxypyridine HCI	2.1	4.3	4.1	4.9	5.2	9.1	2.8	3.4	3.2	prediction	NI	0	/	<u> </u>
15	di-n-propyl disulphide	19.9	95.9	83.5	17.5	18.5		81.1	83.2	86.3		Total	10	10	20
16	Potassium Hydroxide 5%	0.9	1.7	1.6	4.6	2.0	3.3	0.9	3.1	1.0					
17	benzynethiol, 5-(1,1-dimethylethyl)-2-methyl	6.9	46.6	30.8	10.6	21.0	11.6	6.3	5.0	6.6	Sensitivity (%)	100.0		
18	1-methyl-3-phenyl-1-piperazine	6.7	4.5	3.6	9.8	10.9	11.0	1.3	1.8	2.2	Specificity (%)		70.0		
19	heptanal	9.4	10.3	10.4	9.5	7.0	9.5	11.9	10.2	10.9					
20	1,1,1 Trichloroethane	8.7	12.0	7.8	9.1	7.9	17.4	7.6	7.0	6.8	Accuracy (%) 85.0				
: Classification NI : Classification I															

11.Results and Discussion

The test was positive for 1-bromohexane at all study centers; judgments for other substances stayed unchanged.
 The performance standards (acceptance criteria and success criteria) were satisfied at all participating study centers.

A summary report on the present validation results was sent to the OECD secretariat.